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The Control of Pyrone and Aromatic Cyclisation in
Polyketonic-Polyenolic Systems by Magnesium Alkoxide Concentration

By L. CromBIE and A. W. G, JAMES
[Department of Chemistry, University College, (University of Wales), Cathays Park, Cardiff]

ILLustraTION of the way the direction of base-
catalysed cyclisation leading to benzenoid systems
can be altered by magnesium chelation in polyke-
tonic—polyenolic systems has been given.! We now
report diversions of pathway in the cyclisation of
dimethyl 2,5-diacetylglutaconate. Sodium hydro-
xide (1 mol.) in benzene containing a little methanol
yields dimethyl 3-acetyl-4,7-dimethynaphthalene-
1,6-dicarboxylate (III) (469%,), formed by hydrolysis
and decarboxylation with bimolecular condensation
of the glutaconic acid (I) or ketone (II). With
sodium methoxide, lithium methoxide, and calcium
methoxide in methanol-benzene the pyrone (V) is
formed from the diacetylglutaconate anion (IV,
trans-enol) (See Table 1).

In the presence of sodium methoxide the anion
(VI) can be trapped from the pyrone as dimethyl
(VII) (46%,) or methyl ethylxanthophanic enol
(VIII).

When the base used is magnesium methoxide
three products, the pyrone (V), dimethyl 4-methyl-
6-hydroxyisophthalate (IX) and methyl resaceto-
phenonecarboxylate (X) can result from dimethyl

2,5-diacetylglutaconate depending on the amount of
magnesium methoxide employed (see Table 2).

It appears that the acetylpyrone can bind 1 mol.
of magnesium* as the chelate from (VIb), but with
sufficient magnesium methoxide present the
glutaconic ester held in equilibrium as the mag-
nesium chelate is attacked by excess of base and
cyclises as shown. According to the geometry,
which is assumed to be fairly labile in a system of
this type, the anion can cyclise irreversibly via

TABLE 1

% Yields of isolated pyrone

Mol. ratio base/ester
NaOMe

LiOMe

Ca(OMe),

R
COzMe
0] - 0O O MeCO CO;Me
NS —_—
MeO,C
20.M
CO:Me (1)
(I) R=CO:H
() R=H
3/1 1/1 2/1 4/1
44 76 81 66
30 80 79 75
67 79 81 81

* On adding 1 mol. of magnesium methoxide to the pyrone it is recovered unchanged after acidification: on adding

2 mol. the isophthalate and resacetophenone are formed.
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TABLE 2

% Yields of isolated products: reagent magnesium methoxide.

Mol. ratio base/ester
Pyrone (V)
Isophthalate (IX)
Resacetophenone (X)

* Detected by thin-layer chromatography

3/1 1/1 2/1 4/1
84 78 nil nil
nil trace* 55 59
nil trace* 26 19
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Michael-aldol pathway to give (IX) or irreversibly
via Claisen condensation to give (X), as magnesio-
derivatives. Addition of 1 mol. of magnesium
methoxide to the 2,5-diacetylglutaconate followed
by 1 mol. of sodium or calcium methoxide causes,
as expected, substantial formation of (IX) and (X).

The Ziegler bispyrone (XI)? gives the phloro-
glucinol (XV) when treated with 10 mol. of
magnesium ethoxide: similarly, 10 mol. of magne-
sium methoxide reacts with the bispyrone (XII) to

OMe Me

give the phloroglucinol (XVI). The latter reaction
(amount of magnesium methoxide unstated) has
very recently® been reported{ and these authors
find that aqueous potassium hydroxide reacts with
(XII) to give the degraded resorcinol (XVII),
explicable as a product of aldol-type reaction with
hydrolysis and decarboxylation. We suggest that
an excess of magnesium methoxide causes chelate
formation, and products (XV) and (XVI) being
formed via the bischelates (XVIII) and (XIX).

+ Itis presumed that there is an error in formula (XI) of that communication as the cypher possesses a ring methyl

more than our (XVI).
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Chelate formation and geometry prevents aldol-
type cyclisation, and Claisen cyclisation ensues as
shown to give the phloroglucinol system.

The bispyrones (XIII) and (XIV) yield resorci-
nols (XXIV) and (XXV) (and relatives) by 2,7-
aldol-type condensation when methanolic potas-
sium hydroxide is used, but magnesium methoxide
gives types (XXII) and (XXIII).? This is under-
standable if chelate involvement (XX)—(XXI)
applies: in the case of the styryl derivative
(XXIII) further cyclisation to a 4-pyrone® ensues.
Significantly we find that the pyrone (XXVI) and
the triketone (XXVIII) resistant even on refluxing
with 10 mol. of magnesium methoxide. The S-
ketonic centres can be considered immobilised as in
(XXVII) for the pyrone, and possibly as a bis-
magnesio-complex in the case of the triketone.
These are geometrically unsuitable substrates for
aromatic cyclisation despite the expectancy that a
terminal carbanion would be formed.
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